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A second-order perturbation theory is developed for the response of

slightly damped gyroscopic systems. The solution is based on the eigen-

solution for undamped gyroscopic systems and is expressed in terms of

\ 7 4L

real quantities alone.

1. Introduction

A general theory exists for the response of linear systems to

arbitrary time-dependent excitations (Ref. 1). The solution is based on

the so-called transition matrix. For high~order systems, the determination

of the transition matrix is time-consuming, so that the method is not

particularly attractive computationally. The situation is considerably

better for special classes of systems, as shown in the following.

Undamped nongyroscopic systems are characterized by symmetric mass

and stiffness matrices. The eigensolution for such systems consists of i

g ! r g-_ real eigenvalues and eigenvectors, where the latter are orthogonal with

. 8 respect to the mass matrix. Taking advantage of these properties, the

5 response can be obtained without much difficulty (Ref. 1). If viscous

L damping is present, then the eigensolution ceases to be real, even when
?- €.9 the damping matrix is symmetric. Both the eigensolution and the response

np
"

are significantly more difficult to obtain than for undamped

*This work was supported by the Naval Research Laboratory,
Division, Advanced Systems Branch, under the ONR Research Gran




(Ref. 1). A method for obtaining the eigensolution and respcnse of un-
damped gyroscopic systems has been developed recently by the first author
(Refs. 2 and 3). Taking advantage of the fact that the gyroscopic matrix

is skew symmetric, the eigenvalue problem can be transformed into one in

B e T R e e e s

terms of symmetric matrices alone.

sy

The problem of dymped gyroscopic systems is considerably more compli-
cated than those corresponding to the three special cases mentioned above.
The sum of the damping matrix and the gyroscopic matrix is an arbitrary
matrix. Hence, any advantage resulting from the symmetry or skew symmetry
of coefficient matrices is lost, so that one must return to the general
theory.

! ; This paper is concerned with gyroscopic systems with small damping.
In this case, damping can be regarded as a perturbation to the undamped
gyroscopic system. Indeed, a second-order perturbation theory for the

@ response of slightly damped gyroscopic systems is developed in this paper.
The solution is based on the eigensolution for undamped gyroscopic
systems and is expressed in terms of real quantities alone. The theory

contains the case of slightly damped nongyroscopic systems (Ref. 4) as a

special case.

2. Response of General Damped Gyroscopic Systems

The equations of motion of a general damped gyroscopic system can

be written in the matrix form (Ref. 1)
M(t) + (G + €)q(t) + Kq(t) = Q(t) (1) | ain

where M, C and K are n X n real symmetric matrices, G is an n x n real O

skew symmetric matrix, g(t) is the n-dimensional configuration vector
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and Q(t) is the associated n-dimensional force vector. We shall consider
the case in which M and K are positive definite.

The solution of Eq. (1) can be most conveniently derived by trans-
forming the equation to state form. To this end, we introduce the 2n-

dimensional state vector and excitation vector

x(t) = [§7(e) | ¢~ (en” (22)

T,T

X(e) = [Q°(t) | 0" (2b)

as well as the 2n X 2n matrices
M 0
* =
w - (54 (38)
!

G+C ;K
R = [-:i——i—o] (3b)

where M* is real symmetric and positive definite and K* is real but

arbitrary. Definitions (2) and (3) permit us to rewrite Eq. (1) in the

state form
M*x(t) + K*x(t) = X(t) (4)

Before discussing the solution of Eq. (4), we wish to reduce it to
standard form, in which the coefficient matrix multiplying 3 is simply the
identity matrix. Ordinarily, this would mean premultiplication of Eq.

(4) by (M*)-l. Owing to the special nature of the problem, however, there
exists a computationally superior procedure. Indeed, because the matrix
M* is real symmetric and positive definite, we can use the Cholesky

decomposition (Ref. 1) and write
Mk = LLT (5)

where L is a lower triangular matrix. Then, introducing the linear




transformation

tTx(e) = w(®) ,  x(t) = LTu(e)

where L-T = (LT)-I = (L-l)T, Eq. (4) can be reduced to the standard

form

u(t) = Au(t) + U(t)

in which

PR e (8)

is a real nonsymmetric matrix and

S W g

u(e) = LIRCe)

is a real vector.

The solution of Eq. (7) can be written in the general form involving

the convolution integral (Ref. 1)

g t
u(t) = 8(t)u(0) + [ &(t,T)U(T)dr (10)
| 0

where 9(0) is the initial vector and

o(t,T) = eA(t_T)

is known as the transition matrix.

The solution of Eq. (7) can also be obtained by modal analysis,

which amounts to the determination of the Jordan form for A. To this end,

let us consider the eigenvalue problem

A‘.li L Ai"‘i ’ 1-1,2,...,211 (12)

where Ai and u, are the eigenvalues and eigenvectors of A. For simplicity,

we shall assume that all the eizenvalues are distinct, so that the Jordan
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matrix is diagonal
i A = diag[A,] (13)

The eigenvectors u, are known as the right eigenvectors cf A and can be

arranged in the square matrix

Bels % e gl (14)
k The adjoint eigenvalue problem is
A=k, 4RL2,...08 (15)

and has the same eigenvalues Ai as before, as well as the left eigenvectors

vy (i=1,2,...,2n). The left eigenvectors can be arranged in the square

o S N T R N BT S

matrix

? Valy, ¥ -0 Y] (16)
The right eigenvectors are orthogonal to the left eigenvectors, a property

known as biorthogonality. The eigenvectors can be normalized so as to

satisfy

Vi = UtV = 21 a”n

where I is the identity matrix, in which case the Jordan matrix can be

expressed as
T
VAU = 2A (18)

The reason for the factor 2 on the right side of Eqs. (17) and (18) will

become evident later.

Because the vectors u, on the one hand and the vectors vy, on the
other hand are linearly independent, either set of vectors can be taken
as a basis for a linear vector space LG, which implies that the solution

of Eq. (7) can be represented as a linear combination of the eigenvectors

5




y, or of the eigenvectors y,. USing the vectors y, as a basis, we can

i
write

i

2n
u(e) = I y.z (£) = Uz(v) (19)
=1

where z(t) is a 2n-vector with components zi(t). Introducing Eq. (19) into

Eq. (7), premultiplying the result by VT and considering Eqs. (17-18), we

obtain

: z(t) = Az(t) + Z(t) (20)
where

% 2(t) = 2 V'U(E) (21)

Equation (20) represents a set of 2n independent equations having the

solutions

t
z,(t) = e‘itzi(O) + s e*i(‘°f)z1(r)dr V. . RS (22)

or in vector form

A(t-1)

i At g
E z(t) = e z(0) + IO e Z(t)dt (23)
t .

where we note that eAt is a diagonal matrix. The formal solution is
completed by first introducing Eq. (23) into Eq. (19) and then intro-
ducing the result into the second of Eqs. (6).

The interest lies in systems with a large number of degrees of
freedom, measuring in the hundreds or more. For such systems, the proce-

dures described above must receive closer scrutiny.

Solution (10) involves an integral containing the transition matrix
9%, Eq. (11). To generate the matrix &, it is necessary to expand a power 1

series in A. Then, the solution is obtained by performing the indicated

6




PURp——

integration. For large-order systems, the process can be timé:éonsuming.
In addition, éomputer roundoff is likely to introduce computational
errors. The other procedure, namely, that based on modal analysis, is
also not very attractive for high-order systems. Indeed, the procedure
requires the solution of the algebraic eigenvalue problem for the matrix
A. But A, although real, is not symmetric. Hence, in general the eigen-
values and eigenvectors are likely to be complex quantities, as opposed
to real quantities for real symmetric matrices. Moreover, computational
algorithms for the eigensolution of arbitrary matrices are not nearly as
efficient as those for real symmetric matrices. Hence, for high-order
matrices, serious numerical difficulties can be encountered, and a dif-

ferent approach appears highly desirable.

3. Undamped Gyroscopic Systems

We observe from Eqs. (3) and (8) that in the absence of damping,
C = 0, the matrix A becomes skew symmetric. In this case, the eigenvalues
occur in pure imaginary complex conjugate pairs and the eigenvectors also

occur in complex conjugate pairs, or

Agi = 1191 = imigi 3 p L Iy S | (24a)
Ay, = Xu o= -iwu ,  1=1,2,...,n (24b)

where Ch is the ith natural frequency of oscillation. Because AT = -A,

the left eigenvectors of A are simply the complex conjugates u,. Indeed,
if we write first
T b
yiA = Aiyi = 1w1~1 » 1=1,2,...,0 (25)

and then transpose the equations, we obtain

Ay, = - \v, = -luy sy i=1,2,...,n (26)




| m’”m““ﬁ B e

so that, comparing Eqs. (24b) and (26), we conclude that

vV, = u

¥y, "9 ., 1=1,2,.... (27)

Hence, the 2n eigensolutions of A and AT can be written in the special

form of complex conjugate pairings, or

s St G e T LR gl

B 1'1,2,...,11 (28)
_E — -—

’f o it WL SR

s vV, = u

i i

The above implies that it is not really necessary to solve the eigenvalue
problem for AT to obtain the left eigenvectors vy
Next, let us premultiply Eqs. (24) by -A and write

A%y = -tway, =ole , 1=1,2,...n (292)
2— - _ 2-
-A u = iwiAgi = wu % fml 2 eoosn (29b)

from which we conclude that the matrix -A2 admits the same eigenvalue wi

for both eigenvectors u, and gi. Hence, the 2n eigenvalues of -AZ consist

of n eigenvalues mz with double multiplicity. All the eigenvalues of

i
-A2 are real and positive, which is consistent with the fact that -A2 is

not only real and symmetric but also positive definite. But a real sym-
metric matrix is known to possess only real eigensolutions, so that it is

not necessary to work with complex eigenvectors. Indeed, because any

linear combination of the eigenvectors u, and ug

-A2 belonging to wi. we can simply choose the two real eigenvectors

is also an eigenvector of

1 ® = - —i; - a = =
7 (4 +u) =Rey =y , 7 (4 -u)=Iny =2z (30)

~1i
In conclusion, the eigenvalue problem for the undamped gyroscopic

system, Eqs. (24), has been reduced to the eigenvalue problem for the

real symmetric positive definite matrix -Az. The latter problem has




multiplicity two, with the real'eigenvectors Yy and zy belonging to the

same eigenvalue wi (i=1,2,...,n). These are essentially the results ob~
tained in Ref. 2.

The reduction of the eigenvalue problem for an undamped gyroscopic
system to that of a real symmetric positive definite matrix makes possible
the use of a large variety of computationally efficient algorithms for
the solution of the latter problem. The question remains, however,
whether there is an efficient way of producing the response of a damped
gyroscopic system. For arbitrarily large damping, the answer must be
negative, as the addition of the matrix C to G destroys the skew symmetry
of A and the symmetry and positive definiteness of -Az. On the other
hand, for relatively small damping, it is possible to devise a perturba-
tion scheme taking advantage of results obtained for the undamped case.
Before discussing the specific case of slightly damped gyroscopic
systems, we'shall present a second-order perturbation theory for

arbitrary real matrices.

4. Second-Order Perturbation Theory for the Algebraic Eigenvalue Problem

Let us consider a 2n X 2n arbitrary real matrix A. The eigenvalue
problem for A is given by Eq. (12) and the adjoint eigenvalue problem is

given by Eq. (15). The two eigenvalue problems are rewritten as

Agi = A191 § InNT 200004520 (31a)
T
A . Aiyi » i=1,2,...,2n (31b)
where Ai is the ith eigenvalue (the same for both problems) and u, and vy
are eigenvectors of A and AT, respectively. As mentioned in Sec. 2, v ﬂ

and v, are called right and left eigenvectors of A, respectively, and

i
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possess the biorthogonality propefty. Upon the normalization indicated

by Eqs. (17) and (18), the biorthonormality relations have the explicit

form
‘ Tou. = uiy. = 28 1,j=1,2 2 (32a)
% -j\.‘i %591 1j ’ »J=1,2,...,2n a
% viAn, = uAly. = 28 1,§=1,2 2 (32b)
:' "j "i "j "'i ij ’ ’ 9Ly ey n

It should be pointed out that eigenvalues and eigenvectors satisfying | ]

Eqs. (32) satisfy Eqs. (31) automatically, but the reverse is not neces-

sarily true.

Next, let us assume that the matrix A can be expressed as

A=Aj+A (33)

f where Ao and Al are known matrices, with the elements of Al being of one
i

order of magnitude smaller than the elements of AO. In fact, the matrix

{ : A can be regarded as the result of perturbing the matrix Ao

Consequently, we shall refer to'AO as the unperturbed matrix, to A as the

1 as the perturbation matrix. The eigenvalue

slightly.

perturbed matrix and to A
problem associated with Ao will be identified as the unperturbed eigen-

value problem. Denoting the eigenvalues of AO by xo

vectors by Yoy and the left eigenvectors by YOj‘ and recognizing that

they all satisfy eigenvalue problems of the type (31) and biorthonormality

i’ the right eigen-

relations of the type (32), we can state by analogy the unperturbed

eigenvalue problem

Ao""lOi - Aoigoi » 1-1’2, coe ,zn (343)

T

A0901 = A01901 5 i=] .2 0005201 (34b)

and the corresponding biorthonormality relations
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T 2
Yos%os = Yos¥os = 28yy »  D3=li2,....2n (35a)
f uoAu . =uTAu . = 2% 8 1,451,250 0520 (35b)
E Y0370%0i ~ Yoj“0%0i o S e s il i

Now let us assume that unperturbed eigenvalues A and eigenvectors

0i

u. . and Yoi? satisfying Eqs. (34) and (35), are known. Then, our objective

~01i

is to produce eigensolutions of the perturbed eigenvalue problem in terms

of the unperturbed eigensolutions and the perturbation matrix A To this

1
end, we seek solutions of the perturbed eigenvalue problem in the form

Ai = AOi + Ali + AZi e 5 i=1,2,...,2n (36a)
9y = 901 + Yy + Yy + e 5 dmi D e 20 (36b)
Y VY + Y4 + Yoy R . b b1 R SRR (36¢)

where the first subscript identifies the order of any particular term.

For example, is of order one, and hence is one order of magnitude

A11

smaller than AOi and one order of magnitude larger than AZi'

i is of order two, and hence is one order of magnitude smaller than

AT e - TN I o S TR

Similarly,

12

Y14 and two orders of magnitude smaller than Yoi*

sions (36) are not finite. Hence, if all terms in these expansions are

We note that the expan-

determined, these expansions must converge to the eigensolutions of the
perturbed eigenvalue proﬁlem. Because we shall determine and use only a
finite number of terms, the resulting truncated expansions will provide

approximate eigensolutions, which must tend to the unperturbed eigen-

0 g Y - VD D PR 8 A S T N T AT

solutions as Al tends to zero. Furthermore, as A1 tends to zero the terms

in any one of Eqs. (36) must maintain the same order of magnitude in

relation to each other. For example, we cannot have the situation where

2
tends to zero as A1 and Uiy tends to zero as Al.

21
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The question arises as to what equations one should use to determine

the perturbations to the eigenvalues and eigenvectors. Lancaster (Ref.

4), Franklin (Ref. 5) and Wilkinson (Ref. 6) present derivations in which
Eqs. (31) are utilized. Franklin carries the derivation only through
first order, while Lancaster and Wilkinson ﬁursue the manipulations
through second order. Wilkinson points out that normalization, as in
Eqs. (32), is lost and that the perturbed eigenvectors must be renorma-
lized (Ref. 6, Sec. 2.7). To avoid this difficulty, it is suggested in
this paper that Eqs. (32) be used to determine the perturbations to the
unperturbed eigensolutions. As mentioned previously, Eqs. (32) imply not
f only normalization but also satisfaction of the perturbed eigenvalue
problem, Eqs. (31).
Substituting Eqs. (33) and (36) into Eqs. (32) and separating
according to order of magnitude, we obtain
| T

0(0): 26

Yoi%1 T “°1j
. 1,9%1,2,.0.,28 (37a)
YoiR0%1 = Pro1®1y
v 3 Vv b -
Yoi1¥11 7 Y13%1

T

T
* Yost1%1 t Yagho¥os T 2

0(1): 0
T 1. I=1,2 L os¥n (37b)
Yo3t0¥11 e T

T

T T
0(2): Yos¥pq * ¥1q¥e * Toy¥eq = O

L;3s%1s2;0 00520 (37¢)

i T T T T
g Yosto%s * Yoshi¥11 T Yagho¥is T Yishitos
: T

* Yy580%1 = 222404y

As expected, Eqs. (37a) are identical to Eqs. (35). Turning our

attention to Eqs. (37b), we now wish to determine X and v

11° %14 11°

Because u is a 2n-vector in the space LG, and because the vectors

1i

!
i
i
3
|
- )
1
i
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Yoy (1=1,2,...,2n) span this space, we can represent u

nation of the Ui Hence we write

2n

w., = Le.u .
1i k=1 ik~0k

and we note that the smallness of u

11
coefficients eik be small. Following the same pattern, we represent

1i

i=1,2,...,2n

v,y 38 2 linear combination of the Yoy 28
2n
Yoo & ¥V s 18] .2 oo s2n
i ., 1k-0k

where the coefficients Yqi are also

(39) into Eqs. (37b) and using Eqs.

€+ ¥y =0 . LiL2,..
1. T )
205815 * Y01%51 = = 2 Yo421%1 °

as a linear combi-

(38)

relative to Y1 requires that the

(39)

small. Substituting Eqs. (38) and

(37a), we obtain

Y e

Pl 0 LIRL2,..

When 1 # j, Gij = 0, so that, solving for € and Yig0 Ve obtain

T
V.. A, u
. Pt e 222 };01) ’
i i 0i 03

1,j-1,2,0 .o ,zn’i*j

Alternatively, for i = j Eqs. (40) become

eii + Yii =0 % i=1,2,...,2n
Ao, ey ye=be B o oy 1=1,2,...,20
01'€11 * Yy 2 Yo1*1%1 T M1 ol ek

Equations (42) yield the first order perturbations to the eigenvalues

1T
M1 2 YotM%1

Moreover, even though Eqs. (42) do not determine €

i=1,2,.

ovyofl

these equations are clearly satisfied if we take

(40a)

(40b)

(41)

(42a)

(42b)

(43)

14 and Yii uniquely,




Equations (41), (43) and (44) determine the first-order corrections A

By o

it = Y11

v,, fully.

1i

=0

, i=1,2,...,2n

(44)

i L A

The reason for our assumption that the unperturbed

eigenvalues be distinct is evident from Eqs. (41). It is easy to verify

from Eqs. (41) and (43) that A and v.. do tend to zero as A, tends

11’ Y11 14 1
to zero.
Let us now consider Eqs. (37c¢c) and obtain the second-order correc-

tions. Proceeding as before, we let

2n
By = L€ 0 . ] D e e ey 21T (45a)
~21i k=1 1k ok
2n
V., = LY . I=] .25 -;2n (45b)
21 k=1 1%20k
where éik and ;1k are second-order quantities. Substituting Egqs. (45)

into Eqs. (37c), and using the biorthonormality of the unperturbed eigen-

solutions, Eqs. (37a), we obtain

2n -
eij + I eiijk + in =0 , i,j=1,2,...,2n (46a)
k=1
2n 2n
% 1 T 3"
‘os®1s * 2 o eucostitor * 2 TorCaVa G jkVOkAIUOi
*Ao1¥51 " 22181y, 4,9e1,2,...,2 (46b)
Using Eqs. (40), Eqs. (46) can be reduced to
¥ o 2n
eij + in kEleikekj s L%l 2,50.420 (47a)
04815 * Moa¥q1 = P1g = 2197084 * 224844
2n
+ kfl(AOi 04 - A )eikekj R N, S RS ) (47b)

14
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When i # j, Gij = 0, so that Eqs. (47) can be solved for €,, and v

1j §1°
with the result
L 1 2n
" T Ro1-"03 (3729084 * kfl(AOk-Apj)eikekj ,
1,§=1,2,...,2n (48a)
3 1 2n
Y41 ™ Jorbos T e kfl(AOi-AOk)eikekj ’
I S0 T (48b)
When i = j, Eqs. (47) become
o = 2n
S vy, " Te 6. . 1,§%,2,...,2 (49a)
k=l
i s 2n
Aos €y * Ygq) = Ay * kf1(2A01 AT TR
1,§%1,2,...,2n (49b)
Solving Eqs. (49) for AZi’ we obtain
2n
x21 = kfl(lok - AOi)eikeki i=Y.2,...52n (50)

Although Eqs. (49) do not determine éii and ?11 uniquely, the equations
are satisfied if we take

Z

-~

- 3 ==
€ iy S € s 1-1,2,....211 (51)
ii - = G =1 ik ki

Equations (48), (50) and (51) determine the second-order corrections,

121, Yy and Vot fully. Recalling that Ali’ eij and Yij are proportional

to Al' we conclude that AZi’ Yy and YZi are proportional to Ai, as

anticipated.
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5. Slightly Damped Gyroscopic (or Nongyroscopic) Systems

The second-order perturbation solution derived in the preceding
section is quite general and the only restriction is that the matrix A
be real. In the case of slightly damped gyroscopic (or nongyroscopic)
systems, the matrix C can be regarded as being of one order of magnitude
smaller than matrices G and K. Hence, recalling Eqs. (3b), (8), and (33),
we can write

-1/ 6 ! K| -T
Ao - L [:R-l -a:lL (52a)

= - 1C 1 9J;-T
B [; t o]L (52b)

One should note that the matrix L can be partitioned, allowing a reduction

in computational effort. Indeed, from Eqs. (3a) and (5), we can write

L, 10
L= 6--t-i- (53)
JainZ
T T
where M = L1L1 and K = L2L2. Hence, Eqs. (52) can now be written as
o )
L, lcnl e le
A = - |~FemmmZemmfonioo-2 (54a)
0 0 Tl
e i
<
L1-1CL1-Ti 0 f
A =- - (54b) |
L 0 1 0 :
?

Note that L1'1L2 is a lower triangular matrix, so that Ao is banded

The symmetry and skew-symmetry cf Al and An, respectivelv, is readily
apparent. Because matrix Al is of one ora:r of magnitude smailer than

AO' the developments of the preceding section are readily applicable.

In fact, because matrix Ao is skew symmetric, the unperturbed eigensolutions
of Sec. 4 are in reality the eigensolutions of the undamped gyroscopic

system discussed in Sec. 3. Recalling the results of Sec. 4, we anticipate

16




Algo.. Because only the first n rows and columns

are nonzero, we need use only the upper halves of

products of the form yoT

of the 2n X 2n matrix A1

vectors Y and Y
Let us introduce primed subscripts where a prime indicates that the
subscript in question has been increased by n. For example, j' = j + n,

j=1,2,...,n. Using this notation we have, from Eqs. (28), the pairings

YT e g T IS lg o Pt
i A (55)
Mo T Mg v B Sl T S X Tl

I=1.2,.+.50

The first-order perturbation solution is obtained by introducing

YOi = Uy i=1,2,...,2n into Eqs. (41) and (43). The first-order
eigenvalue perturbation is -
Ay, =gy g 1%1,2,...,20 (56)
It 2 cod-1=01  ° S
H_-—
where u,, = Yy Because Al is real and symmetric, all Ali are real.

Furthermore, assuming that the matrix C is positive semidefinite, Al is
negative semidefinite and hence the Ali are nonpositive. Moreover, due

to the real symmetric nature of the matrix Al’ we can restate Eqs. (56)

as
1.1
Apg ® Mg *F gty 5 181,2,0.0m (57)

which is to say that the first order perturbations to AOi and AOi' - ibi
are the same. These familiar results are reassuring.

The coefficients €, in the expansion (38) for w4 are

Ty W
ey - 5&“_}7‘&)_ , 4,k=1,2,...,2n, 1 % k (58)
01~ "ok

17
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Recalling the symmetry of Al and the imaginary nature of the Ao's, one
can show that
e, " E;i AR T " IO, (59a)
€ vyt = E;k PRI =) O R (59b)
€t "€ 0 Lik=L2,...0n (59¢)

Thus if we regard the 2n X 2n array of €'s as partitioned into four n X n
arrays, we need calculate only the upper triangular elements in the two

upper n X n arrays. Furthermore, from Eqs. (58), we note that eik and

eik' are related by the conmon vector A Yoy Let us write Eqs. (38)

1
as
n =
S " 0 tales T e ¢ Th2enn Sic

Then, we can show that

T s

911' - 911 bl 1-1’2 SLELO ’n (60b)

and, from Eqs. (39), (41) and (59a), that

o

- S

e e

v

Y14 1-1,2,.-.,2:; (61)

Next, let us denote the unperturbed eigenvectors as follows:

Yot = Yo1 * 121 » Your T Yoy ~ 1%y - 1*L2,...m s

T r———— S

T = u =
and note at this point that the normalization Yoi1%s1 = Y01Y%1 2 can be
realized by setting

Yofor = Fosfor =1+ 1LZseesm (63) 1

Inserting Eqs. (62) into Eqs. (43), we obtain




H

: 4 x Bt Se g -

£ = = = = - 2

g S 0 L W [2'01“1?01 . z01“1501] e ot
1 Yoar Yoo

Because the matrix Al is negative semidefinite, Eqs. (64) confirm that

all first-order perturbations to the eigenvalues

are real and nonpositive.

Moreover, inserting Eqs. (62) into Eqs. (58), we can write for i # k

T T T T
2 [EOkAlfoi 3 30k“1-‘101, g 1[1'01:“;2'01 : 50&“_1}01J

1<4i, k<n (65a)

T T T T
SR lZOkAlfoi i 501;‘*1%1! 1[201‘“1!01 3 50kA1501J

ik 2(m01 + mOk)

‘1<i<n,n+1<k<2n (65b)

T T T T
[ Toxt1%os * 501;“130_1] £ i{YOkAIXOi £ 50kA1501J :

3 ik 2(m01 + m0k)

1<k<n, n+l1<1i<2n (65¢)

T T T T
i IYOkAlfoi 501:“1?0;] i i@k“‘;}’m 6 501:“1%1]

ik Z(moi - mok)

n+1<41i, k<2n

Introducing Eqs. (62) and (65) into Eqs. (38), we obtain

T T T T
¥ [YOkAlfoi = 501:“;}01} 5 i[zoﬁﬂm % 501:“1501!

u,, = I = (Yo + 12,.)
g 20ug, = o) Yor + 120k
k#i
T T T T
. Zotr%os * ZowhyYos) ~ 1[301&;201 7 501:“1’-‘01! b
2(mOi + ka) Lok =0k

18),2,c0440 (66a)




1=1,2,...,n (66b)

TR

Y11
The second-order perturbation eigensolutions are obtained from Egs.

(48), (50) and (51). From Eqs. (50), (55) and (59a), we can write

n
Ay ™ ikfl[(“’mc - Wq)€5085n ~ (o F 9910841 qyr]
I TR (67a)
Rygr ™ Tu PR 3 S (67b)

It should be evident from Eqs. (62) that A\, ({ = 1,2,...,2n) is imaginary.

21
From Eqs. (51) and (59) we can write

e = = i o " = =
eii Yii 2 u:l[eimeim * em'eim'] ’ =] .2 050 (68a)

~ -~

Eg T Y =€ s 181,2,....m (68b)

We note that éii and ;ii (1 =1,2,...,n) are real. Comparing Eqs. (48a)

and (48b), we can show that

€ 1,001,2,..0520, 1 4 k (69)

i Vig. °*

This result, coupled with Eqs. (68), allows us to state that

6, = ;ik RO T SR (70)
and hence that
Yoy "y o 1=1,2,....2n (71)

Let us now write Eq. (48a) as

1 n
e P R— (A - A )e + I
ik 1k 11" "1k o

€
01~ ok

lmoﬂ = Aok € 1nuk

s (AO- + AOk)em'e-'k]} igk-l.z'ooo,zn’ i * k




F-

T

I o

F o

One can now show that

€ i,k‘l,Z,n.,n (733)

i'k ik *

é = éi'k ’

ik 1,k=1,2,...,1 (73b)

From Eqs. (47a) and (70), we can write, in analogy with Egqs. (59a)

- n

€, . =~¢€,_+ L (e, e +e ,e,)
ki ik~ kemi Cka''m'i

i,k=1,2,...,2n, 1 # k (73c)
Once again, if we regard the 2n X 2n array of €'s as partitioned into
four n x n arrays, we need calculate only the upper triangular elements
in the upper two n X n arrays. Use of Eqs. (73) allow us to f£ill in the

remaining elements. Let us write Eqs. (45a) as

n o i Y
Uyy = I (eikgok + eik,gok,) s - Am] e ;20 (74)
k=1
Bearing in mind that Yo' = Ebk’ Eqs. (73a), (73b) and (74) allow us to
state that
Uyt = 85y »  11,2,....m (75)

It may be convenient to exhibit the real and imaginary parts of the

second-order perturbations explicitly. To this end, let us write

eik = eRik + “nk § i,k=1,2,...,2n (76)

where subscripts R and I denote the respective real and imaginary parts

of e Substitution of Eqs. (76) into Eqs. (67) yields

1k.

n
- - 2 2 - 2 2
AZ:I. i kfl[[ka w01] [eRik + eIik} + [ka wOi] [eRik' + eIik'H

i=1,2,...4n (77a)




v

SRR A 1=1,2,...,n (77v)

Substituting Eqs. (76) into Eqs. (68), we obtain

€ -ig 2 +e2 |+ (€2 , +e2 i=1,2 n (78a)
@02 R T T Rim' Tim' ’ s

éi,i,-éﬁ MR | 1 O (78b)

Using Eqs. (76), Eqs. (72) can be expressed as

= 1

e, = —=——{(\. - A (e, -1e )
ik Woq m0k { 1k 1i” " Tik Rik

n

= mfl[(‘"mn = Oo) (R imCRmk ~ ©1in®Imi)

= on + 90 Cpint®rn'x ~ €1im'C1m'i) ]

n

+1 I [(wgy = 0g) CpynCrme * €11nCRmi)
m=1

+ ka)(e

= (wog Rim S * eIim'eRm'k)]}

1,k=1,2,...,2n, 1 # k (79)

Let us write

eik - eRik + ieIik » 1,k=1,2,...,2n (80)

where cR:I.k and eI 1k are the respective real and imaginary parts of eik'

Equations (80) and (62) allow us to write Eqs. (45a) as

n
Ypy ™ kfl[(eluk * e ok ¥ CCrae * Craer) %0k

+ i * e ok * 18 = CRar) 2oy

i=1,2,...,n (8la)




=y

4y » 1=L,2,...,n (81b)

Yaq

which completes the second-order perturbation solution.

It should be observed from the above that all the quantities needed
for the evaluation of the first- and second-order perturbations are
computed by means of the eigenvalues and eigenvectors of the unperturbed

system, i.e., those of the undamped gyroscopic (or nongyroscopic) system.

6. System Response Based on the Second-Order Perturbation Eigensolution

In Sec. 2, we obtained the equations
Ait toai(e-1)
zi(t) =e zi(O) + IO e Zli(T)dT o AmY 2N (82)

It will prove convenient to express Eqs. (82) in terms of the state vector
and the associated excitation vector. From the results of Sec. 2, we can

write

1 1|30
2,(0) = 5 v L [5(0) , 1=1,2,...,2n (83)

Q(t)
1 T =185 5
zli(t) = -2' YiL [ 9 ] ’ i 1,2’oo~ ,2!1 (84)

Equations (82) can now be written as

MEL T 3(0) M=) 1
2y(6) = &' oy L [;'('o) *f 2

Q(1)
¢ St % L it
1L [ 0 Jdt

-~

i=1,2,...42n (85)

which permits us to write the state vector




e —

(t) 1=1 i=1 q(0)
* f; e":l(t-f)gi_ffl [SE-:ZJM} (86)
From Eq. (36a), we have
Ai = AOi + Ali + 121 e s i1=1,2,500,520 (87)
In Sec. 5, we noted that A01 and AZi are imaginary quantities, while xli

is real and negative. Furthermore, we noted that

Aoi' = Aoi = Aoi Fy i‘l,z,ooo,n
Ali' = 111 » 1=1.,2,...,0 (88)
Aygo -Tu-- Ayy » 1=1,2,....n

where the meaning of a primed subscript was indicated in the previous

section. In view of this, let us express Eqs. (87) as

A - - Yi" i(ﬂ i’l,z,on',n

i at !
ol (89)
Ai' = Ai = ~ Yi + imdi " 181 .2 05400
where
;- S 111 ARR 1 PSR )
(90)
1“d1 = AOi + 121 ¥ i=1,2,...,n
and we note that the Wiq represent frequencies of damped oscillation.
From Eqs. (36b), we have
u, =y, + Uy + Uy ’ i=1,2,...,2n (91)

where we have shown that




N A N S

- Uyt =Ygy o+ 1=L.2,....m

- A

- Wyt ® By o+ 1%L.2,4.m (92)
r : Upge ® Byy o+ 1=1,2,....n

Hence, we can state that

=

u, » 1=1,2,....n (93)

Yy

Furthermore, let us write

2n
y, = L E u 5 dm]td . eyl (94)
i k=1 ik~0k
where
E,, =6, +e, +€, +... , 1i,k=1,2,...,2n (95)

ik ik ik ik
From Egqs. (36¢c), or

v

~1-Y01+Yli+321+ 5 s b [P0 S0 1 (96)

| we can similarly show that

Yy = Yi 3 123 52 s 00 on) 97)
and we can write
s S
n" 1:.1 ok ° 1=21,2,.¢0520 (98)
where
O B8, =8, +8,. +00e 5, 1,081,2,.0.,20 (99)

ik ik ik ik

Let us now reconsider Eq. (86). From Egs. (89), (93) and (97) we
conclude that the 1'th term is the complex conjugate of the ith term,

for every 1 and i'. Hence, we can rewrite Eq. (86) as

25




1 e A AN 1 O it S B s iy

§(t) g 3(0)]
E---] =1 Re {e"itg o s
(t) 1 19(0) ]

t [Q(1)] :
+ [ exi(t-T)g .'TL-1 S . (100)
0 i~i 0
e o

From Eqs. (89), we can write

exit = e—Ylt(cos w,.t - 1isinw

ai dit) s  A=1,2,...,n (101)

and from Eqs. (94) and (98), we have

2n b
LB u e SENE Ty

u u s I=1,2,...,2n (102)
k=1 ik~0k im~Om

T-
YiYy

so that, using Eqs. (62), we can express Eqs. (102) as

4 n

| T

| ST L l[Eik[ZOk 5 i%k] % Eik[ZOk ? ifmc]]
’

e [ 1 ] T T
[Gim[ZOm 7 iEo:n} * Cimt [ZOm N 150::1” ’

i=1,2,...,2n

(103)

i Bearing in mind that the coefficients Eik

we can write

and'Eim are complex quantities,

= R, * 111 y 1=1,2,...,2n (104)

T
0 |

where the 2n X 2n matrices Ri and Ii are the respective real and

imaginary parts of the 2n x 2n matrix gin

R Introducing Eqs. (101) and

(104) into Eq. (100), we obtain




§ . " 9(0)

f & HE cos w, 1t RiLT '---]

' q(t) o 0 q(0)

e L %

q(t) i=1] _-y4t T [4(0)
+ e sin wdit IiL [5___

q(0)

(t-1)R, L1 9(0)]
cos w t-Tt)R,L ———ldT
di i 0 J

& f; e‘Yi(t-T)

t [Q(1)]
+ o V500 o (e-ry1, 17 g(-)-- dr (105)

L

which expresses the response in terms or real quantities alone.

Note that the above formulation remains valid in the case of non-

gyroscopic systems, G = 0.

7. Numerical Examples

Consider the two-degree of freedom, damped gyroscopic system of
Ref. 1 (shown here in Fig. 1). The equations of motion can be written

in matrix form as

Mg(t) + (G + C)q(t) + Rq(t) = Q(t) (106)
where
(m 0] [0 -2m@
M= % G=
(0 mj | 2mQ 0
= & . (107)
¢ 0 kl-mnz 0
Cs= : K= 2
0 0] . O kz-mﬂ
~1 -1 -2
Let us take m = lkg, ¥ = lrad 8 *, ¢ = 0.1kg s ~, k1-3kgs " kz-

bkg s-z, and note that kl,kz and  have been picked such that matrix

K is positive definite. From Eqs. (3) we form the matrices M* and K*
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t 1 0o}jo0 o
’ m! 0 0 1!0 O
s ||
! 0! k 6 0l2 o
0 0! 0 4 :
(108)
' -z b2 9 :
Tgte ! K g oty
K* = |== e =
-k 10 2. g to 0 :
3
Lo -4lo o :
Tue Cholesky decomposition matrix L, and its inverse, is
1 o} o o] [E. 0t 9 0 ] L
’ ¢ a2t @0 AR 0 :
; L= g (109)
: e ol /2 o 0o 0!1//2 o
[0 0" o 3 6 o010 1/2]

e i e s

where we recall the partitioned nature of matrix L. Following Eqs. (8)

and (33) we can now form the matrices A.o and A1

b8 2 =2 0

| - -
Al SR 2 0 0 =2
Ay = -L —te L =
-k !0 72 10 0 o

L5 6. & :
(110) 3

0.1 0}!0 O

28




S PR

Computations of the pertufbations to the undamped eigensolutions

proceeds as indicated previously. The results are summarized in Table 1.
One should note that the system eigenvalues and associated eigenvectors
occur in complex conjugate pairs. Hence, we include only half of them.
Furthermore, we include only the right eigenvectors.

Inspection of Table 1 reveals the quality of the convergence. It
is also interesting to inspect convergence via a biorthonormality check
of the perturbed eigenvectors. In Table 2, we present the matrix
%-Yrg .« Numerical values within parentheses represent products

1 T T T %

while values not within parentheses represent products
% [yo§ * glﬂ (901 + gu] S ST, (111b)
The response to excitation in the form of the Dirac delta functiom,
with impulse equal to 1 kgms-l has been computed. Figure 2 represents a
plot of the coordinate y(t) versus t due to an excitation applied in the
y-direction. The two curves represent the response obtained by the gen-
eral theory and the 0(0) response. Within the accuracy of this plot, the
0(0) + O(l) and 0(0) + O(1) + O(2) Tresponses are identical to that obtained
by the general theory. i
As another example, let us consider the slightly damped nongyroscopic H

system depicted in Fig. 3. The equations of motion considered are ]

Mg(t) + Cq(t) + Kq(t) = Q(t) (112)

where




0 2 -0.2 0.2 -4 4

Matrices A, and A, are

0 1
K 0, -5 0
0 04} /1.6e -/0.4
A-

LIS C R 0 0
Lo 0. 0 0

(114)
-0.4 v0:02 | O 0
/0.02 -0.1 0 0
B,
0 0 0 0
| o 0 0 0

Summaries of the exact and perturbed eigensolutions are given in Table 3

and a biorthonormality check is given in Table 4. The quantities displayed
in this table have the same meaning as those in Table 2. The response of the
system to an excitation in the form Fl(t) = 0, Fz(t) = §(t) is presented

in Fig. 4. As in Fig. 2, the response obtained by the general theory and

the 0(0) + 0(1) and 0(0) + 0(1) + 0(2) responses are all given by one

curve, whereas the 0(0) response by the other curve.

piid Al
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8. Summary and Conclusions

A second-order perturbation analysis was developed for the

algebraic eigenvalue problem

(Ao + Al)gi = ligi A i=1,2,...,2n

where matrices A, and Al are real and where A, is one order of magnitude

0 1

smaller than Ao. The analysis was based upon knowledge of the eigen-

solutions when Al is the null matrix. The perturbation theory was applied

to slightly damped gyroscopic systems. In this case, A0 is skew

symmetric and A, is symmetric, so that special computational advantages

1
can be realized. Note also that the nongyroscopic systems can be handled
within the context of the same general formulation by simply letting

G = 0.

As an example, a two-degree of freedom slightly damped gyroscopic
system was analyzed. As another example, a nongyroscopic system has been
treated. Even for relatively large damping, the perturbation results for
both cases agree well with the solutions obtained by algorithms for

general matrices. Because the present formulation is based on the eigen-

solution for real symmetric matrices, it should prove far superior for

high-order systems.
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